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Synthesis of C-aryl-D2,3-glycopyranosides via uncatalyzed
addition of triarylindium reagents to glycalsq
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Abstract—2,3-Unsaturated-C-aryl glycopyranosides are important intermediates in the synthesis of medicinally important C-aryl
glycosides. Treatment of glycal acetates with triarylindiums in ether at room temperature gives good yields of C-aryl-D2;3-glycosides
of predominantly a-configuration. The mechanism of this reaction likely involves the formation of an oxocarbenium ion inter-
mediate via indium(III) Lewis acid-assisted ionization of the glycal C.3 acetate. Coupling of trivinyl- and tris(alkynyl)indiums with
glycals similarly led to C-vinyl- and C-alkynyl-D2;3-glycosides in good yield.
� 2004 Elsevier Ltd. All rights reserved.
Table 1. Uncatalyzed addition of Ph3In 2a to tri-O-acetyl-DD-glucal 1a
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Entry Eq. 2a Solvent Time Yield 3a a:b

1 1.0 Et2O 24 h 95 5:1

2 0.50 Et2O 48 h 90 5:1

3 0.33 Et2O 48 h 40 5:1

4b 1.0 CH2Cl2 24 h 90 6:1

5b 0.50 CH2Cl2 24 h 93 6:1

6b 0.33 CH2Cl2 24 h 86 6:1

7b 1.0 Toluene 24 h 92 6:1

8 1.0 THF 24 h <5 ––
b

The great current interest in C-aryl glycosides stems
from their occurrence in natural products, which possess
important medicinal and therapeutic properties.1 C-aryl
glycopyranosides with a double bond in the 2,3-position
are useful synthetic intermediates, since this unsatura-
tion can be further functionalized to produce an array of
complex carbohydrates.2 Several synthetic methods
allow access to such compounds, many relying on the
addition of organometallic reagents to hex-2-enopyr-
anosides.3–5 Although these approaches give good yields
of the desired glycosides, air- or moisture-sensitive,
toxic, and/or pyrophoric reagents are frequently
employed, and expensive transition metal catalysts are
often required. Furthermore, strongly basic or acidic
reaction conditions limit the functionality that can be
employed in either the aryl or carbohydrate coupling
partner. As an alternative, we sought to use easily pre-
pared arylindiums as nucleophiles for the construction
of C-aryl glycosides. These reagents are attractive be-
cause of their low toxicity, air- and moisture stability,
wide functional group tolerance, and atom efficiency.6;7

The uncatalyzed addition of arylzinc species to glycal
acetates has recently been reported.8 Although triaryl-
indiums are expected to be less reactive than organo-
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zincs, we hoped that the Lewis-acidic character of the
organoindium reagent6 might assist the reaction through
an SN1 manifold. Indeed, stirring tri-O-acetyl-DD-glucal 1
in ether with 1 equiv of triphenylindium 2a at room
temperature for 24 h furnished the desired glycoside 3a
in 95% yield with 5:1 a=b selectivity (Table 1).
9 1.0 CH3CN 48 h 20 ––

aReactions were run at a concentration of 0.1M glycal in the solvent

listed.
bReactions in CH2Cl2, toluene, and CH3CN were performed by

evaporating ether or THF from the indium reagent and redissolving

the residue in the appropriate solvent, followed by addition of the

carbohydrate.
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Nonpolar solvents such as ether, dichloromethane, and
toluene proved to be the media of choice, with reactions
performed in dichloromethane and toluene giving
slightly better stereoselectivities than those run in ether
(Table 1, entries 1, 4 and 7). Reactions performed in
either THF or acetonitrile gave negligible quantities of
glycoside 3a, even after 48 stirring at room temperature
(entries 8 and 9).

Since the atom efficiency of organoindium reagents in
cross-coupling reactions has been well documented,9 we
attempted the coupling reaction described above with
substoichiometric amounts of arylindium reagent (Table
1, entries 1–3 and 4–6). High yields were obtained after
24 h for reactions performed in dichloromethane
employing either 0.50 or 0.33 equiv of 2a; in ether, a
longer reaction time (48 h) was required to obtain
moderate to high yields of 3a employing 0.33 or
0.50 equiv of 2a, respectively.10 These data suggest that
all three aryl groups on indium are indeed capable of
participating in the carbon–carbon bond-forming pro-
cess.

The scope of the reaction was assessed by coupling a
variety of arylindiums with glucal (1), rhamnal (4) and
galactal (6) acetates (Table 2). Yields were good in the
majority of cases, and even sterically hindered glycosides
Table 2. Triarylindium additions to glycals 1, 4, and 6 in ethera
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Entry Glycal 2 Ar3In Ar

1 1 2a Ph

2 1 2b 3-F-Ph

3c 1 2c 4-Cl-Ph

4b 1 2d 4-Me-Ph

5b 1 2e 2-Me-Ph

6d 1 2f 4-OMePh

7 4 2a Ph

8 4 2c 4-Cl-Ph

9 4 2d 4-Me-Ph

10b 4 2e 2-Me-Ph

11 4 2f 4-OMePh

12b 4 2g 2-Napththy

13 6 2a Ph

14 6 2c 4-Cl-Ph

16 6 2d 4-Me-Ph

aAll reactions were run at a concentration of 0.1M glycal and organo-indiu
b The reaction took 48 h to reach completion.
c The reaction in CH2Cl2 gave 6:1 a:b 3c in 92% yield.
d The reaction in CH2Cl2 gave 4:1 a:b 3f in 90% yield.
could be prepared efficiently (entries 5, 10, and 12). The
a-configured11 C-aryl-D2;3-glycoside is obtained pre-
dominantly in most instances, with electron poor
arylindiums (entries 2, 3, and 8) generally giving better
a-selectivities than electron rich (entries 6 and 11), an
observation not unprecedented in Lewis-acid mediated
C-glycosidation chemistry.12 Furthermore, the solvent
effect on stereoselectivity is more pronounced when
electron-rich arylindiums are employed in the glycosyl-
ation (Table 2, compare entries 3 and 6 and Table
footnotes c and d), implying the possible intermediacy of
a carbohydrate-derived carbocation (vide infra).13 The
consistently high a-selectivity observed for products 7a,
7c, 7d derived from glycosidation of 6 (entries 13–16)
reflects the steric influence of the galactal axial C.4
acetate on the course of the addition reaction.14 Product
stereochemistries were confirmed by direct comparison
with literature data and spectra2 and also by 13C NMR
spectroscopy (as has been noted previously, the carbon
chemical shift of C50 is diagnostic of the stereochemistry
at the anomeric position15).

To further probe the mechanism of this reaction, we
prepared tri-O-acetyl-DD-allal 8, the C.3 epimer of glucal,
according to the protocol of Danishefsky.16 This com-
pound was subjected to 1 equiv of triphenylindium 2a in
ether at room temperature for 24 h (Scheme 1).
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Product a:b Yield

3a 5:1 95

3b 6:1 45

3c 6:1 89

3d 6:1 68

3e 4:1 55

3f 1:1.5 75

5a 5:1 60

5c 5:1 70

5d 3:1 95

5e 4.5:1 70

5f 1:1 55

l 5g 3:1 67

7a 10:1 50

7c 10:1 50

7d 10:1 80

m in ether at room temperature for 24 or 48 h.
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Scheme 2. Mechanistic proposal.
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Scheme 1. Reactions of allal 8 and glucal 1 with Ph3In.
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The coupling reaction gave the same stereoisomeric
ratio of products (5:1 a:b) and approximately the same
yield (95%) of 3a as the analogous reaction of glucal 1
with 2a. This result lends support to the proposal that
the reaction proceeds through a common cationic
intermediate, such as that represented by structure A
(Scheme 2).

The triarylindium reagent acts as a Lewis acid in coor-
dinating a lone pair on the C.3 acetate ester, thus
facilitating an SN1 ionization process (assisted by lone-
pair donation from the pyranyl oxygen) that leads to A.
The nucleophilic indate species17 formed transfers a
phenyl ligand preferentially to the more electrophilic C.1
carbon of the carbohydrate, furnishing the observed
products. The resulting diorganoindium species can
enter another reaction cycle with 1 (or 8) in which it can
again act as a Lewis acid and transfer another phenyl
ligand to A.18 Kinetically preferred axial addition of the
carbon nucleophile is observed in most cases,12c except
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Scheme 3. Reaction of organoindiums 9, 10, and 11 with 1.
for very electron-rich nucleophiles, which can effectively
compete with the counterion/solvent to occupy the ste-
rically less-demanding b-face of the oxocarbenium ion.13

Finally, we studied the coupling reactions of alkenyl,
alkynyl, and alkylindiums with glucal (Scheme 3).
Reaction of 1 molar equivalent of tris(2-methylprop-
enyl)indium 9 with 1 in ether for 24 h gave a �1:1 mix-
ture of a:b C-vinyl-D2;3-glycosides 12 in 75% yield. In
contrast, reaction of tris(phenylethynyl)indium 10 with
1 gave an 11:1 mixture of a:b C-alkynyl-D2;3-glycosides
1319 in 55% yield. Tributylindium 11 gave no addition
products when combined with 1 in ether for 24–48 h,
instead producing polar compounds likely resulting
from acetate cleavage/hydrolysis.

The 2,3-unsaturated C-glycoside products of these
reactions can be stereoselectively transformed into C-
aryl glycosides20 by dihydroxylation with OsO4. For
example, applying the UpJohn protocol21 for catalytic
c
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Scheme 4. Preparation of C-aryl glycoside 14 via dihydroxylation.
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osmylation to a-C-phenyl-D2;3–glycoside 3a, followed by
acylation (Ac2O, pyridine, cat. DMAP) gives exclusively
a-phenyl-mannoside 1422 in 85% overall yield, in which
the hydroxyl groups have been introduced from the face
of the carbohydrate opposite the aromatic moiety
(Scheme 4). Although numerous C-glycosyl flavonoids
that have been isolated possess a b-C-glycosidic link-
age,23 there are notable and important exceptions.24

Since only a few procedures currently exist that provide
access to a-C-aryl glycosides,25 this mild, stereoselective
sequence should prove of great utility in the synthesis of
this class of compounds.

In summary, triorganoindiums are mild, atom-efficient
and environmentally friendly reagents that can be em-
ployed in the preparation of a diverse array of 2,3-
unsaturated C-glycosides.
Supplementary material

Complete experimental details and spectroscopic data
for all compounds prepared in Table 2 and Schemes 4
and 6.
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